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ABSTRACT 

A technique for applying a metall ic coating to the surface of a 

porous tungsten ionizer of an ion thrus te r  has  been developed. 

effect of a s i lver  coating on the flow charac te r i s t ics  of the ionizer has  

The 

been investigated. 

and the effectiveness of the coating evaluated. 

of s i lver  did not provide the degree of protection desired.  

The technique was used on an operable ion engine 
0 

A coating of 50 to 100 A 

i x  



S E C T I O N  I 

SUMMARY 

The objective of this p rogram was to develop a procedure f o r  

applying a protective coating to the ionizer  surface of a l inear  s t r ip  

ces ium contact ion thrus te r .  The coating was to protect  the ionizer  

surface during ground handling and testing. 

the coating should be removable in  a flight environment using equipment 

that is  integral  to the thrus te r .  

After serving i t s  purpose,  

This p rogram was divided into two tasks .  Task I undertook the 

investigation of the selection and deposition of the coating. 

meta ls  were  considered as possible coating ma te r i a l s  ( s i lver ,  gold, 

and copper).  

of its high sputtering r a t e  and ease  of removal f rom the ionizer.  Simple 

dc sputtering with magnetically confined e lec t rons  and an argon atmos - 
phere was used. Task I. studied the gas  flow charac te r i s t ics  of ionizer  

ma te r i a l  as a function of s i lver  coating thicknesses .  The ionizer  could 

be sealed with a coating about 20 pm t h i c k  It w a s  found that af ter  the 

s i lver  was removed f rom the ionizer ,  the flow charac te r i s t ics  of the 

ionizer  were  the same  as those pr ior  to the coating. 

p r o c e s s ,  the si lver formed small bal ls  on the ionizer  surface.  This 

l a rge  amount of s i lver  was considered hazardous in an actual engine 

configuration, s o  that thicknesses  of 100 A were  used  in  Task 11. 

Three  

Silver was chosen a s  the ma te r i a l  for this study because 

During the removal 

0 

Task I1 was an extension of Task I to the l inear  s t r ip  engine. 

The sputtering technique was developed so  that a protective coating 

could be placed on an  ionizer  surface without removing the ion engine 

from the vacuum chamber af ter  the ion engine had been operated.  In 

addition to the development of the technique, the effectiveness of the 

1 



s i lver  coating was evaluated. 

was used  for  the evaluation. 

ionizer  displayed clean charac te r i s t ics  as determined by the cr i t ical  

t empera tu re  and neut ra l  flux measurements .  A s i lver  coating of a p -  

proximately 100 A was sput tered on the ionizer  and then evaporated.  

The s i lver  coating did not affect the ionizer  performance.  A s i lver  

coating of approximately 100 A was again placed on the ionizer ,  and 

this t i m e  the ionizer  was exposed to air for th ree  days. 

was then placed in  the vacuum chamber and the s i lver  removed. 

engine was operated and cr i t ical  t empera ture  and neutral  flux measu re  - 

rnents were  made.  It was revealed that the cr i t ical  t empera ture  had 

inc reased  by about 15OoK. It was concluded that the investigation of 

the coating effectiveness was too l imited to rule out the use of s i lver  

as a protective coating. 

An al l -metal  ion pumped UHV chamber 

An ion thrus te r  was operated until the 

0 

0 

The thrus te r  

The 
i 
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S E C T I O N  11 

INTRODUCTION 

An important  problem in the development of contact ionizer  

t h rus t e r s  i s  that of maintaining the tgcleant '  sur face  conditions observed 

during labora tory  operation of the th rus t e r s .  

tungsten is  exposed to a tmosphere for modifications or shipment to the 

launch s i t e ,  the ionizer  immediately develops an oxide surface.  I Be-  

cause of the higher cr i t ical  t empera tu re  of the oxide surface,  the 

thrus te r  h a s  different operating pa rame te r s  until the oxide i s  desorbed.  

The goal of this p rogram was to develop a method for applying a p ro -  

tective coating to the ionizer  surface while the th rus t e r  is still in  the 

vacuum system. 

the procedure and ma te r i a l s  used  in  this investigation had to be com- 

patible with a complete l inear  s t r ip  thrus te r .  This repor t  covers  the 

resul ts  of two main tasks ,  

tion of the effects of a s i lver  coating on the flow charac te r i s t ics  of a 

tungsten ionizer.  

The second task was devoted to applying this technique to a fully a s s e m -  

bled thruster .  In  an  additional effort, the coating p rocess  was evaluated 

in  t e r m s  of ionizer  performance.  

When the clean porous 

The coating was to  be removed by evaporation. Both 

The first task  was devoted to the invest iga-  

The s i lver  was dc sput tered in an argon atmosphere.  

3 





S E C T I O N  111 

DEVELOPMENT OF A SPUTTER COATING TECHNIQUE 

A. INTRODUCTION 

The objective of Task  I was to develop a technique for applying 

a protective coating to the sur face  of a porous tungsten ionizer.  

coatings selected were: s i lver ,  copper,  OT gold. It was sepcified that 

the coating be applied by argon ion sputtering. The resultant coating 

was  to be removed by heating the ionizer in  vacuum with ionizer 

hea te rs  used in  the ion thrus te r .  

which totally sealed the ionizer su r face  (io e.  , reduced the t r ansmis -  

sion of gas t o  "zero" value). 

The 

The goal was to obtain a coating 

Porous  tungsten ionizer assembl ies ,  of the type used i n  the 

model L E  thrus te r ,  were  used in  this  program.  The t ransmiss ion  

w a s  measured  by means of a nitrogen gas flow system, 

A successful sputter cleaning and deposition technique was 

developed, 

surface of the porous tungsten. 

duced to 3% of the original value. 

Silver coatings up to 20 pm thick were deposited on the 

The nitrogen t ransmiss ion  w a s  r e -  

To completely sea l  the ionizer would 

require  much thicker coatings. 

the ionizer was the elimination of the propellant valve, it did not s eem 

feasible to use  this  approach i n  view of the complexity involved in the 

removal of mass ive  coatings at lower tempera tures  over a long period 

of t ime.  

Task I would be best  satisfied by the development of an alternative 

Since the p r i m a r y  purpose of sealing 

Therefore ,  it was concluded that the technical objectives of 

protection scheme. :% This  involved the deposition of a 

.c -6- 

Technical directive f rom H. R, Hunczak, NASA LeRC, 
9723-HRH, 18 June 1969. 

thin 

reference 
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0 
(approximately 100 A thick) s i lver  coating over  the ionizer to protect 

the sur face  f rom oxidation on exposure to the atmosphere.  This  was 

accomplished, and Task  I was completed. 

B. BACKGROUND 

This section summar izes  the technical background of the ion 

sput ter  deposition techniques and the gas t ransmiss ion  measurement .  

Its purpose is to  provide a bas is  for the selection of a specific argon 

ion sputtering process .  

this  p rogram will be discussed in Section III-C. 

The physical details  of the apparatus  used in 

1. Sputter Cleaning and Coating Technique 

A typical procedure for cleaning and coating the ionizer  i s  p r e -  

This procedure i s  as sented in Attachment I of Contract NAS 3 -  11527. 

follows : 

"Place the ionizer  assembly in a vacuum chamber equipped with a liquid 

nitrogen cold t r ap ,  and with the ionizer sur face  2 inches f rom the  ground 

plane. Evacuate the chamber  and hold a vacuum, < 10 t o r r  for twenty 

( 2 0 )  minutes.  

all t imes  when an ionizer is in the chamber .  

chamber  to r a i se  the p r e s s u r e  and establish the discharge on the ionizer 

sur face  at 2. 0 kilovolts and 0 . 9  to 1. 0 mi l l iamperes  for 2 0  minutes.  

Remove high voltage, ground the ionizer te rmina l  and uncover the gold 

slug. 

a t  3 .  0 kilovolts and 0. 9 to 1. 0 mi l l iamperes  for  two (2 )  hours .  

the high voltage, vent the chamber  to one atmosphere with nitrogen and 

inspect ionizer coating for uniformity. ' I  

- 6  

Be s u r e  that the liquid nitrogen cold t r a p  is activated dt 

Admit argon gas  to the  

Adjust argon p r e s s u r e  and establish discharge on the gold slug 

Remove 

6 



A n u k b e r  of pa rame te r s  determine the thickness of the deposit: 

1. the t a rge t  mater ia l  

2. 

3 .  the gas  p r e s s u r e  

4. 

5. the diode voltage 

6. the diode cu r ren t  

7. the deposition t ime. 

the g a s  used to form the p lasma 

the diode (target-  subs t ra te )  distance 

Other factors  (such as the ta rge t  tempera ture ,  the substrate  

tempera ture ,  and the charac te r  of the substrate  surface)  have a very 

l imited influence on the deposition thickness.  Several  ion sputtering 

techniques can  be applied. These  a r e  descr ibed below, following a 

brief discussion of the reasons  for the selection of the target  meta ls  

and the argon g a s  for the plasma.  

The use of the coating ma te r i a l s  to  s i lver ,  copper,  and 

gold i s  based on the following considerations.  

tively ine r t  with respect  to chemical reactions with the atmospheric  

gases  and with the porous tungsten. 

high that they can be corripletely removed from the porous tungsten by 

heating the ionizer to operating t empera tu res  with the hea te r s  used in 

the t h r u s t e r ' s  operation. An additional advantage i s  that these metals  

have the highest  sput ter  yield of any of the elements  when bombarded 

by argon ions.  

sputter yields for argon ions. 

higher vapor p r e s s u r e  than the other two metals .  

su re  is found at a 27S°K higher tempera ture  for  copper and a 350 K 

higher tempera ture  for  gold. 'k 

These meta ls  a r e  r e l a -  

Thei r  vapor p re s su re  is sufficiently 

This i s  shown in  the F ig .  111-1, which i s  a graph of 

Silver i s  preferable  because i t  h a s  a 

The same vapor p r e s -  
0 

*R.E.  Horing, "Vapor P r e s s u r e  Curves  for the More Common Ele-  
men t s ,  " RCA Labora tor ies ,  1967. ' 

7 
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Fig.  III- 1. 
Sputtering yields at 400 e %  argon ion 
energy f o r  2 8  e lements  versus  the e le -  
ment ' s  atomic number (N .  Laegreid 
and G . K .  Wehner, J .  Appl. Phys.  3 2  
365 (1961)). 

- 
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The choice of gas  used to  fo rm the p lasma i s  l imited to the iner t  

gases .  

m o s t  of the previous studies have been performed with argon. 

the sput ter  yield i s  slightly g rea t e r  f o r  the m o r e  mass ive  ions ( i . e .  , 
krypton and xenon), the difference in  the yield i s  not 

l a rge  enough to  warran t  the use  of e i ther  of the o ther  gases .  

reasons ,  helium and neon are  not used  because of the lo\v sputter yields. 

Argon i s  by far the most  abundant and least expensive, so  that 

Although 

F u r  s imi l a r  

The oldest  and simplest  sputtering method is the dc diode, shown 

in  Fig. 111- 2(a). A stable p lasma i s  formed between the target  (cathode) 

and the substrate  (anode) when the e lec t r ica l  field and the gas p r c s s u r c  

a re  sufficient to cause collisional ionizations. 

about 3 kV and with diode distances of the o r d e r  of 5 c m ,  a g a s  p r e s s u r e  

of about 500 p m  i s  needed to sustain the plasma. 

F o r  diode voltages of 

This  would be a very  inefficient method of coating the ionizer 

because the mean  free path in  the argon p lasma i s  extremely shor t ,  

result ing in scat ter ing of the sputtered metal  a toms and thus a very  

poor deposition rate.  The mean free path L of a gas::: in cm is given 

by the following expression: 

-20 62 
T’pTorr  L = 2.33  x 10 

0 i s  the p r e s s u r e  in T o r r ,  
-8  K J  P T o r r  where T is  the gas  tempera ture  in 

and 6 i s  the atomic o r  molecular  d i ame te r  (for A r ,  6 = 3.67 x 1 0  

If we es t imate  the g a s  p r e s s u r e  as S O 0  pm = 5 x 1 0  

pera ture  as 500°K, the mean  f r e e  path i s  

cni). 

T o r r  and the t e m -  - 1  

2 -8)2 = 0.018 cm L = 2 .  33 x x 5 x 10 /5 x-10-1 x (3.67 x 10 

* S .  Dushrnan, Scientific Foundations of Vacuum Technique , 2nd ed. , 
J . M .  Laffer ty ,  Ed. (Wiley, New York, 1962). 

9 
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HRL 203- 24 

TARGET 

TARGET 
I 

HRL 203-25 - 

1 SUBSTRATE 

HR L 203 -26 

i 
I TARGET 

1 1 

B+ 

PLASMA 

SUBSTRATE 

h+ . 

1- 
F i g .  111-2. Types of plasma sputtering sys tems.  (a) 

Simple diode. (b) Magnetically confined 
diode. (c) Triode o r  fi lament supported 
plasma.  
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The significance of this i s  that t he re  will be considerable backscattering 

of the sputtered a toms,  general  scat ter ing of the sputtering a toms,  and 

collisional ionization of the sputtered atoms.  

anisms will mean  that only a very smal l  amount of meta l  will be deposited 

on the substrate .  

considerable argon g a s  will be trapped i n  the deposited metal .  

These three  loss  mech-  

In addition, a s  a resul t  of the high argon p r e s s u r e ,  

The operating p r e s s u r e  of the diode can be lowered considerable 

by confining the p lasma with an axial magnetic field, a s  shown in  
F i g .  111-2(b). 

ions)  and thus stabil izes the plasma a t  a lower p re s su re .  

on the electr ic  field, this sys tem can operate  at p r e s s u r e s  down to 

about 10 pm, where the mean  f ree  path in argon a t  500 K i s  0 . 3 4  cm.  

The magnetic field confines the electrons ( ra ther  than the 

Depending 

0 

In addition to the magnetic confinement, i t  i s  possible to use rf 

excitation to generate a stable p lasma at a lower p r e s s u r e .  

the scat ter ing is reduced, the efficiency is increased;  this type of s y s -  

t em i s  essential  i f  the ta rge t  mater ia l  i s  a dielectr ic .  

discharge can  operate at  p r e s s u r e s  of 0. 3 to 1 pm. 

Because 

The rf supported 

The triode o r  fi lament supported p lasma type sputtering system 

is the remaining major  type; i t  is a l so  shownin Fig. III-2(c). 

emitted by the cathode, produce the ions responsible for  the sputter 

deposition. 

Electrons,  

This sys t em will operate  to p r e s s u r e s  of 0. 1 pm. 

The magnetically confined diode sputtering technique was selected 

for  the following reasons.  

cause  of the low efficiency result ing f rom the high g a s  p re s su re .  

rf supported plasma and the tr iode cannot be applied to a fully assembled 

th rus t e r  and thus could not be considered fo r  this development program. 

The magnetically confined diode sys tem was chosen because of its 

g rea t e r  efficiency. 

The simple diode sys tem was ruled out be- 

The 

Studies of the sputter coating of porous tungsten ionizers were  

per formed previously under Contract NAS 3-6270;  they a r e  summar ized  

briefly herein because the information is applicable. Rhenium and 

1 1  



i r id ium metal were sputter deposited on Mod E porous tungsten in a 

coating about 1. 5 pm thick. The pore s ize  of this ma te r i a l  i s  in the 

range of 3 to 4 pm. 

gen gas t ransmiss ion  o r  the cesium transmission.  

pa rame te r s  of the coated surface were  charac te r i s t ic  of e i ther  the 

rhenium or the i r idium metals .  

that  the sputtered coatings had "piled" on the tungsten and did not seal  

the po res  in the ionizer surface.  

that a coating severa l  t imes a s  thick a s  the pore s ize  ( e . g . ,  10  to 2 0 p m )  

i s  needed to sea l  the ionizer surfaces .  

The 1. 5 pm coating did not change ei ther  the ni t ro-  

The ion emission 

Photomicrographic analysis showed 

F r o m  these studies i t  i s  concluded 

In o rde r  to evaluate the resu l t s  of the coating experiments ,  i t  is 

necessary  to determine the t ransmiss ion  charac te r i s t ics  of the ionizer.  

F o r  this  program the reduction in t ransmiss ion  of the coated ionizer 

w a s  expressed  as the percentage of po res  that a r e  closed. 

the measurement  of the time interval  for  a specified p r e s s u r e  decrease  

in a constant volume of nitrogen (at a specified tempera ture) .  Accurate 

and reproducible measurements  a r e  possible using this technique which 

was developed under Contract NAS 3-6271. 

This involves 

C .  E X P  ERlMENTAL PROGRAM 

The experimental  p rogram involved the design, fabrication, and 

assembly of the sputter deposition apparatus ,  the nitrogen gas t r a n s -  

miss ion  measuring sys tem,  and the coating removal system. This  s ec -  

tion d iscusses  the de'tails of the experimental  apparatus and the modifi- 

cations made during the program. 

The magnetically confined p lasma diode sputtering apparatus 

was set up in a 6 in. d iameter  Pyrex g lass  pipe vacuum chamber.  

glass  pipe was chosen because (1 )  i t  i s  inexpensive, ( 2 )  it allows the 

operator  to view the ent i re  system (which i s  important in an exper i -  

mental  sputtering operat ion) ,  and (3)  i t  permi ts  the use of external 

Helmholtz coils to produce a magnetic field. 

F igs .  111-3 and 111-4. 

The 

This system is shown in 

A c r o s s  sectional view and the details  of the 
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Fig .  111-3. Complete sputter deposition system. 
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Fig. 111-4. View of target  and subs t ra te  a r e a  in  sputter 
deposition system. 
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F i g .  111-5. Drawing  of d e t a i l s  shown in  F i g ,  111-4. 
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Figure  111-6. Detail of sputter target  and substrate  (ionizer).  
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magnetic field coils and the diode a r e  shown in F i g .  111-5, and the de-  

tail  of the diode (with the spacing used  in  runs  3 through 8)  i s  given in 

Fig.  111-6. 

The target  consisted of a 6. 3 cm diameter  water-cooled OFHC 

copper post over  which meta l  foils w e r e  mounted. 

pure me ta l  ( s i l ve r ,  gold, or copper) .  A g lass  s k i r t  was placed around 

the edge of the target  to help confine the p lasma and thus increase  the 

deposition rate. 

that allowed i t  to  be positioned at  any specified dis tance f rom the ionizer 

(or substrate) .  

The foils were  99.99% 

The target  post  was constructed with a vacuum sea l  

A stainless  s tee l  plate was used  to m a s k  the ta rge t  during the 

sputter cleaning of the ionizer surface.  

vacuum seal that in a vacuum flange plate attached to a side arm to the 

glass  pipe. This i s  seen  in  F igs .  111-3 and 111-5. When the sputter 

cleaning p rocess  was completed,  the m a s k  was pulled back ( a f t e r  the 

potentials were  off) and the coating was sputter deposited af ter  the diode 

potentials were  reversed .  

It was mounted on a sliding 

The substrate  (the porous tungsten ionizer)  was mounted on a 

glass  plate below the ta rge t .  The e lec t r ica l  leads to the substrate  were  

shielded with g l a s s  and ce ramic  tubing to prevent  discharge to any other  

pa r t  of the chamber .  In o rde r  to m e a s u r e  the film thickness,  a glass  

microscope slide with a cover glass  as a m a s k  was placed next to  the 

subs t ra te ;  it accumulates a metal  coating equal to that depos i tedon the 

ionizer.  

the mask  was located) is  measu red  by means  of an interferometer .  

After the run, the s tep height on the sl ide (i.  e . ,  the edge where 

The vacuum p r e s s u r e  was measu red  with a Bayard-Alpert  type 

ionization gauge tube. 

couple gauge (Hastings model DV5).  

which is 99. 998% pure.  

able leak valve (Granville Phill ips).  

6 in. diffusion pumped station whichuses  DC705 fluid. 

is a cold finger type. 

The argon p r e s s u r e  was measu red  with a thermo-  

The argon was a prepurified grade 

The flow ra t e  was adjusted by means  of a v a r i -  

The vacuum sys tem i s  a standard 

The cold t r a p  
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F i g .  111-7. Mercury manometer with tungsten wire  contacts for  
electronic timing. 
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The t ransmiss ion  measurements  were  made  with the apparatus 

shown in F ig .  111-7. 

point = -85OF) was used in these measurements .  

Prepurif ied grade nitrogen g a s  (99.997% min;  dew 

The gas was passed 

through a purif ier  consisting of a d r i e r  and a f i l ter .  

gas with a dew point of -lOO°F, and the fi l ter  t r a p s  par t ic les  of 12 pm 

and l a rge r .  

s ten wire  leads through the glass  wall; the wi re s  were  placed about 5 c m  

apart .  A S  the p re s su re  decreased  (and the mercu ry  column fel l ) ,  a 

relay c i rcu i t  and a 6 V battery were  used to s t a r t  and stop an electronic 

t imer ;  the t ime required f o r  a specific p r e s s u r e  change was thus meas -  

ured. 

was used to determine the number of 1000 sec 

t imes.  

The d r i e r  produces 

The mercu ry  manometer was constructed with eight tung- 

The range of the t imer  was 0. 1 to 1000 sec.  An electr ic  clock 

periods for longer decay 

F o r  evaporation of the coating the coated ionizer was mounted in 

a vacuum bell j a r  and heated with the hea te r s  used in  the ionizer when 

i t  i s  operated in the ion thrus te r .  

measure  the surface temperature .  

the ionizer was returned for  the t ransmiss ion  t e s t s .  

An optical pyrometer  was used to 

Following the removal of the coating,’ 

D. RESULTS 

A 99.9970gold foil was used as a target  in run  1, in accordance 

with the specifications in the Statement of Work. A sputter deposition 

was made for the specified t ime,  ion cur ren t ,  ion energy, and target-  

to- substrate  distance. The operating conditions a r e  presented i n  

Table 111- 1. 

f rom the end to the center  of the ionizer.  

s i lver ,  which was used in all subsequent runs.  

the target  and the subs t ra te  w a s  reduced to 2.5 c m ,  and the argon plas- 

m a  ion cur ren t  to the target  was increased  to 3 mA. 

The result ing coating was much too thin, and was uneven 

The ta rge t  was changed to  

The distance between 

These changes resul ted in a 1 .6  pm thick coating for run 2,  

represent ing about a threefold increase  in thickness for a correspond- 

ing increase  in the plasma ion cur ren t  to the target .  A s  a resul t ,  the 
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t a rge t - to-subs t ra te  distance was again decreased ,  this t ime to 1. 6 c m ,  

where it was held for all subsequent runs.  The p lasma ion cu r ren t  was 

increased  to 7 mA and the deposition t ime to 3 hours .  

Run 3 thus represented  a doubling of both the deposition t ime 

and the ion cur ren t .  The inc rease  in  the s i lver  film thickness to 6 .7  5 

pm is roughly proportional to that expected to resu l t  f rom the changes 

in  the operating pa rame te r s .  

The f irst  th ree  runs were  used to establish the general  relation- 

ship between the var ious operating pa rame te r s  - The pa rame te r s  that 

were  kept constant during all eight runs were  the diode voltage (2. 0 kV 

during cleaning and 3 . 0  kV during deposition) and the magnet cu r ren t  

(5. 0 A during cleaning and deposition runs) .  

In o rde r  to obtain the maximum amount of data in the t ime avail-  

able in  this p rogram,  runs 4 and 5 were  made by depositing a s i lver  

coating over  the coatings deposited previously in  runs 2 and 3 ,  respec-  

tively. In run 4, ionizer  number 2 (which had received a 1 . 6  pm si lver  

coating in  run 2 )  was sputter cleaned for  5 min ( r a the r  than the 20 min 

period used on the porous tungsten surface)  at 2 . 0  kV and 0.95 m A ,  

After this  it was coated with a 9. 2pm layer  of s i lver  to produce a total 

of 10.8 pm. Gas t ransmiss ion  measurements  indicated that about 3370 

of the surface was sealed,  compared with 52% closure achieved in  run 3 

with a 6. 75 pm deposit. 

Run 5 consis ted of a 15 min  sputter cleaning of the previous 

deposit  of 6 .75 pm of s i lver .  

p lasma cu r ren t  was 0.4 mA during the cleaning operation. 

th i s ,  an  8 , l  pm laye r  was deposited over the previous run 3 coating of 

6 - 7 5 pm. The t ransmiss ion  measurements  showed that this combined 

l aye r  had sealed 9770 of the surface.  This  was the most successful  of 

the coating experiments  

The p lasma potential was 2. 0 kV and the 

Following 
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A single l aye r  of 15.6 p.ni was deposited in run 6. This produced 

only a 60% c losure  of the sur face ,  which was much less  than had been 

expected. Photomicrographic analysis of the surface (Fig.  111-8(a) was 

taken before the coating and Fig .  111-8(b) was taken af ter  the coating) 

failed to show any visible pores  o r  defects.  

using chemically pure  ethyl alcohol as a fluid. 

f rom the po res ,  mos t  of them located nea r  the ends of the ionizer.  

A bubble tes t  was performed 

Gas flow was observed 

Run 7 consisted of a single 2 0  pm deposit  of s i lver  on ionizer 

number 1 .  This 

was lower than expected based on the resu l t s  of run 5. The ionizer was 

mounted in  a vacuum system and heated gradually to evaporate the coat - 

ing. 

f rom a dull to  a bright appearance as a result  of the melting of the s i lver  

and its coalescence into a ball of about 0. 1 5  c m  d iame te r .  It took about 

1 5  min for  the sphere  to  evaporate.  

The gas  flow tes t s  irldicated 90% c losure  of the pores .  

At a br ightness  tempera ture  of 98OoC, the surface suddenly changed 

Based on this  observation, i t  was decided that although i t  was 

possible to  seal the sur face  with s i l v e r ,  the presence  of a sphere  of 

s i lver  (formed in the removal  p rocess )  could prove a ser ious  problem in 

the thrus te r .  F o r  this reason  heavy coatings received no fur ther  con- 

sideration. A second, and perhaps m o r e  important,  application of the 

coating was to  prevent the contamination of the surface of the porous 

tungsten by exposure to  air. 

the sur face  with a thin (approximately 100 8) coating which w a s  attempted 

in  the l a s t  run  (number 9). 

This  could be accomplished by coating 

The difference between runs 5 and 7 may possibly, be explained 

as follows. 

depositions. This may have caused some s i lver  to diffuse into the por -  

ous tungsten, thus increasing the sealing of the surface.  This indicates 

the importance of testing the effect of substrate  tempera ture  on the de-  

g ree  of s i lver  diffusion into the pores  of the ionizer .  

Run 5 underwent a mild sput ter  cleaning between the two 

21 



2260 

Fig. 111-8. 
Photomicrographs of 
the surface (Run 6). 
(a) Before the s i lver  
deposition. (b) After 
the silver deposition. 
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E. CONCLUSIONS 

A heavy coating can be used to seal  a porous tungsten ionizer ,  

but its effects can be detr imental  to the thrus te r .  

coating to  prevent contamination by oxidation offers considerable 

promise.  

The u s e  of a light 
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SECTION IV 

DEVELOPMENT OF SPUTTERING TECHNIQUE 
FOR THE LINEAR STRIP THRUSTER 

The main purpose of Task  I was to evaluate the effects of the 

sputtered s i lver  on the gas  flow charac te r i s t ics  of the ionizer. 

Because complete sealing of the ionizer required considerable s i lver ,  

representat ives  of Hughes Research  Laborator ies  and NASA Lewis 

‘Research Ctbntcr agreed that thicknesses  of 50 to 100 a should be used 

for the protectivc coating. 

amounts of si l \ ,er  required for complete sealing of the ionizer could 

coat the h igh  voltagc, insulators in the th rus t e r  and cause  them t o  short  

out. 

It was believed that evaporating the la rge  

Task  I1 w a s  directed toward developing a method f o r  sputter coat- 

ing the ionizer of a complete thrus te r  without breaking the vacuum af ter  

the th rus t e r  had been operated.  

e lectrodes was such that a redesign of the ta rge t  as well as a quite dif- 

ferent t a rge t  to substrate  separat ion was necessa ry  to  improve the t a r -  

get ’view’ of the ionizer surface.  F igure  IV-1 shows a c r o s s  section of 

the s t r ip  engine geometry used on this p rogram,  The required sput ter-  

ing pa rame te r s  were determined by a s e r i e s  of experiments  using a 

s t r ip  thrus te r  a s sembly  in  a bell j a r  vacuum station. 

assembly  was positioned in the bell jar with the ionizer facing up. 

cover s l ides  (0.  006 in. thick) were  set on top of the focus electrode so 

that the pa t te rn  and amount of sput tered s i lver  could be observed. 

The th rus t e r  configuration including 

The th rus t e r  

Glass  
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E’ig. I V - I .  C r o s s  section of ionizer 
and electrodes.  
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The f i r s t  t e s t s  used a 1 / 8  x 0 . 0 2 0  s 1.8 in. s i lver  cathode 

located approximately 1 in.  above the decel  electrode. 

the th rus t e r  were  grounded. 

into the chamber  by means  of a valve. 

take place all exposed pa r t s  of the lead that went to  the s i lver  cathode 

had to  be ei ther  wrapped with teflon tape o r  covered with g lass  tubing. 

If this was not done, a p lasma could not be formed a t  the cathode s u r -  

face. The  objective of these f i r s t  t e s t s  was to  obtain a stable plasma 

during the sputtering p rocess .  After this was accomplished, the pat- 

t e rns  on the g lass  cover  sl ides w e r e  studied. The  best  pat tern (i. e . ,  

one that would indicate 1 0 0 ~ 0  coverage of the image) was obtained with 

the cathode in  the vicinity of the acce l  electrode. A g lass  block even- 

tually was used to  keep the cathode centered with respect  to the acce l  

electrode, as shown in Fig.  I V - 2 .  F o r  the geometry shown in  F i g .  IV-2, 

i t  was found that a stable sputtering plasma was obtained with -750 V 

placed on the cathode in  a n  argon p r e s s u r e  of 350 pm.  as determined 

by a thermocouple gauge. After these pa rame te r s  w e r e  determined,  

severa l  g lass  s l ides  w e r e  sputtered as  a function of t ime.  The sput- 

tering t imes  w e r e  60  sec ,  30 s e c ,  15 sec ,  7 -1 /2  sec ,  and 3 s e c .  

These  samples  were  covered with a thin l a y e r  of gold, and their  thick- 

nes ses  w e r e  measured  with an  in te r fe rometer .  The  resul ts  of the 

sample thickness measurements  a r e  shown in  Fig.  I V - 3 .  Only the 

samples  with exposure t imes  of 15 sec  o r  m o r e  could be measured .  

F o r  shor te r  t imes  the thicknesses  w e r e  l e s s  than 200 8 and could not 

be measu red  by the in te r fe rometer .  

A l l  pa r t s  of 

Prepurif ied argon (99. 998yo) \vas bled 

Before any sputtering could 

Because the glass  cover s l ides  were  not on the ionizer surface a 

correct ion factor was applied to  determine the amount of s i lver  that  

would be deposited on the ionizer.  

proximation obtained by t reat ing the s i lver  cathode as a line source.  

This assumption yields the resu l t  that the deposition on the ionizer  i s  

inversely proportional t o  the distance f rom the s i lver  cathode. 

sults obtained using this cor rec t ion  factor  a r e  shown in F i g .  IV-4. 

can be seen  that a sputtering t ime of 5 s ec  should be used to  obtain a 

thickness of approximately 100 8. It is es t imated that the e r r o r  in the 

thickness measurement  can be as la rge  as 10%; i. e . ,  a 5 sec  exposure 

could give a n  actual thickness of 90 to  110 8. 

This  cor rec t ion  factor was a n  ap-  

The re- 

It 
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ION I Z ER 
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Fig.  I V - 2 .  C ross  section of ion izer ,  e l e c t r o d e s ,  
and cathode. 

I ' GLASS COVER SLIDE I 

Fig.  I V - 2 .  C ross  section of ion izer ,  e l e c t r o d e s ,  
and cathode. 
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The above measurements  w e r e  made at the center  of the s i lver  

deposit. Examination revealed that the thickness a c r o s s  the g lass  sl ide 

of the 60 s e c  sputtering sample was fair ly  uniform. 

the center of the deposit was 1350 8, while that at the edge was 1200 8; 
this i s  a var ia t ion of only 9%. 

placing a copper foil on the surface of the ionizer.  Si lver  sputtered 

on the copper foil, covered it completely, indicating that the ionizer 

would be  completely covered. 

been established, it was necessary  to  adapt the cathode s o  that it could 

be  manipulated i n  the vacuum chamber without breaking the vacuum. 

A manipulator was constructed so  that the cathode could be moved i n  

and out of position b’y a rotatory magnetic coupling; s ee  Fig. W-5.  

The thickness at 

A final sputtering t e s t  was made by 

Once the parameter  for sputtering had 
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Fig. IV-5.  Assembly of cathode 
and manipulator. 
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SECTION V 

EVALUATION OF THE PROTECTIVE COATING 

After the sputtering technique for  the l inear  s t r ip  thrus te r  was 

developed, the effect of the coating on the ionizer propert ies  was in- 

vestigated. This investigation used a n  ultrahigh vacuum chamber,  

single s t r i p  ionizer assembly,  and a neutral  par t ic le  detector.  

A .  APPARATUS 

The apparatus used for this p rogram was used severa l  y e a r s  

ago on Contract NAS 3-6271 for the evaluation of high work function 

ionizers.  

operation. 

41 x 

ionizer a r e a  to  be seen  unrestr ic ted by electrodes when viewed f rom 

off-axis; this  made i t  possible to  use a neutral  detector that viewed only 

the ionizer surface and thus had a high signal strength. 

This single s t r i p  thrus te r  was designed for  high perveance 

The design perveance for the ionizer  s t r ip  geometry was 

A/Va"* The choice of the s t r ip  geometry permitted a la rge  

An al l -metal  copper-gasketed chamber  ( see  Fig. V-1) of approx- 

imately 14 in. d iameter  and 40 in. length was used to  appropriate an  

actual space  environment. This chamber  was bakable and ion pumped. 

The ionizer assembly was mounted at one end of the chamber;  it can be 

seen f rom Fig.  V-1 that the axis of the neutral  detector i s  located 4 5 O  

off the normal  to the ionizer surface.  A photograph of the chamber  is 

shown i n  Fig.  V-2;  the left end shows the L N  feedthroughs for the ion 

beam collector and cryowall, both of which were  grounded during the 

ionizer testing. 

2 

The ionizer used €or the evaluation was constructed f rom ma- 

t e r i a l  made  a t  Hughes Research  Laborator ies  f rom 3 . 9  pm spherical  

powder. 
2 

The ionizer was 4.6 c m  long and had an  a r e a  of 2.73 c m  a 

35 



EbS2-I 

MASS SPECTROMETER FARADAY 

AND 'ON GAUGE PYROMETER PORT TUBE PORTS 
COLLECTOR 

Fig. V - I .  C ross  sect ional  view of vacuum chamber .  

36  



Fig. V-2. View of the vacuum chamber from col- 
lector end (neutral detector, cesium 
reservoir,  and ionizer assemblies also 
shown). 
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Its surface was contoured as required for the high perveance optics.  

This ionizer was used in the assembly shown in  Figs .  V-3 and V-4. 

This  assembly comprised a focus ionizer plate, an  acce l  electrode, 

and a decel  electrode, each mounted individually with a se t  of t h ree  

insulators  f rom a base  plate. The base  plate, i n  turn,  was attached 

to a vacuum flange that went on the end of the UHV chamber.  

The acce l  electrode was made f r o m  OFHC copper and had a 

The heater  was used to sheath heater  brazed to  the upper sur face .  

evaporate any cesium that might come in  contact with the acce l  

electrode 

Cesium was supplied to  the thrus te r  by a laboratory feed sys -  

t em through a manual valve attached to  the small flange seen  in  

Fig. V - 4 .  

a tmosphere.  

The feed sys tem was filled with ces ium in  a nitrogen 

A neutral  detector was an  important tool for the evaluation of 

the protective coating. A reproducible, high signal was desirable  to  

determine neutral  f l u x  f rom the ionizer.  The detector was placed as 

close to  the ionizer as reasonable;  this  distance turned out t o  be 

8 c m  at a 45 The detector comprised a m e -  

chanical shutter,  t h ree  collimator slits, a se t  of ion deflector plates,  

a neutral  cesium ionizer and collector,  and a liquid nitrogen reservoi r ,  

The detector assembly is shown i n  Fig. V-5 .  Of the 1.28 c m  of 

ionizer  a r e a  visible at a 45 

an umbra a r e a  of 0.  11 c m  

sur face .  

0 angle to  the beam axis.  

2 

0 angle, the neutral  cesium detector viewed 
2 2 and a penumbra of 0 , 9 6  c m  of the ionizer 

The neutral  detector was aligned optically with respect  to  the 

ionizer by means  of positioning screws  f r o m  the support bracket.  

position of the detector  could be adjusted f rom outside the vacuum 

system. 

The 
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Fig. V-3, Top view of the ionizer assembly. 
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Fig .  V-4. Side view of the i o n i z e r  assembly, 

40 



Fig.  V-5. Neutral detector assembly. 
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B. EXPERIMENTAL RESULTS 

F o r  these experiments the chamber p r e s s u r e s  were  i n  the low 
-8  T o r r  o r  high 10 T o r r  range, depending upon the beam intensity. 

Before  any cesium was allowed to  pas s  through the ionizer,  numerous 

tempera ture  measurements  were  made. The ionizer tempera ture  was 

determined by means  of a brightness optical pyrometer  and a rhenium- 

tungsten alloy thermocouple, 

rected fo r  adsorptive and reflective losses  for  the viewing window. 

The emissivity correct ion of 0 . 6  (at 0 .65  pm) was  used. 

couple used for  monitoring was located in  a well near  the center  rear 

of the ionizer manifold. The thermocouple output was calibrated with 

respect  to the optical pyrometer  cor rec ted  values.  

t u re  readings were  obtained f rom a calibrated m e t e r  during the c r i t i ca l  

t empera ture  mea  sur  em ent s 

The brightness tempera tures  were  c o r -  

The  thermo-  

Thus the tempera-  

0 The tempera ture  measurements  were  accura te  to *30 K based 

on the reproducibility, accuracy of the m e t e r ,  and possible variation 

of the ionizer emissivity correct ion,  A s  a resu l t  of end conduction 

10s s e s  the ionizer displayed a nonuniform tempera ture  distribution of 

l e s s  than 25OK. Tempera ture  measurements  with the optical pyrom- 

e te r  were  always made  a t  the center  of the ionizer.  

for  the measurements  made during the ent i re  experiment a r e  of course  

much l e s s  (jz5OK). 

The relative values 

The neutral  cesium detector was calibrated by means of ion 

beam-on beam-off measurements .  These  were  made af ter  either the 

neutral  detector o r  ion source was moved during the experiment. 

Values for  the ion beam curren t  were  obtained by subtracting 

the acce l  drain cu r ren t  f rom the cu r ren t  readings on the positive high 

voltage power supply. 

the ionizer was measurable ,  p r ior  to  beam star t -up,  an  additional cu r -  

rent  value a l so  was subtracted f rom the positive supply reading, 

In some cases ,  when leakage to ground f rom 
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Because the effect of the coating on the c r i t i ca l  t empera ture  

was the object of the study, this was the most  important measurement  

made.  Neutral  f l u x  measurements  w e r e  used to  substantiate the r e -  

sults of the c r i t i ca l  t empera ture  measurements .  

1. Order  of Taking Data 

To evaluate the coating p rocess  the experiment was run i n  the 

following order .  

a. Operate thrus te r  until ionizer displayed a clean surface 

b. Expos e th r  uste r t o  laboratory environment 

e .  

d.  

Operate thrus te r  until ionizer displayed a clean sur face  

Sputter-coat ionizer with 50 to  100 8 of s i lver  

e. 

f .  

Remove coating by evaporation and run thrus te r  

Sputter-coat ionizer with 50 to  100 3 of s i lver  

go Expose thrus te r  to  laboratory environment for > 24 hours  

h .  Operate thrus te r  and m e a s u r e  c r i t i ca l  temperature .  

2. Initial Tes t s  

The first t e s t s  made on the s t r ip  thrus te r  were  ionizer temper-  

a ture  measurements ,  perveance measurements ,  and neutral  fraction 

measurements .  These were  performed to compare  the thrus te r  pe r -  

formance with that recorded seve ra l  yea r s  ago when it was used under 

Contract NAS 3-6271. 

was that known as unit 10 under the ionizer  study of Contract NAS 3-6271. 

Several  perveance curves were  obtained at different beam levels 

These resu l t s ,  along with the resul ts  f rom the previous work, a r e  

shown in  Fig.  V-6 .  ionizer 

used in this t h rus t e r  is  41 x l o o 9  A / V 3 / 2 .  Both groups of data  fall 

near  this perveance line in F ige  V - 6 . .  This resul t  was expected be-  

The 3.9 pm HRL ionizer used in  the th rus t e r  

2 The  design perveance for the 2.73 c m  

cause no changes have been made on the thrus te r  since it was last used. 
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During the ear ly  testing a few cr i t ica l  t empera ture  and neutral  

fraction measurements  were  made.  These  were  not considered par t  of 

the data used €or evaluation of the coating mater ia l ,  but they did reveal  

the condition of the ionizer  surface following exposure to  air for five 

yea r s .  

ured after the tempera ture  calibrations were  made; therefore ,  the 

ionizer was elevated to  tempera tures  up to 1600 K for  a few hours  

before cesium was allowed to  pass  through it. 

taken, but the sys tem was exposed to  air between the runs.  

temperature  curves  a r e  shown i n  Fig. V-7 .  The Taylor-Langmuir,  

porous tungsten, and oxygenated tungsten l ines a r e  drawn i n  Fig.  V-7 .  

The c r i t i ca l  t empera ture  and neutral  fraction were  first meas -  

0 

Two other curves  were  

The cr i t i ca l  

The first curve displayed a surface condition between the clean porous 

tungsten and oxygenated tungsten surface.  

revealed c r i t i ca l  t empera tures  approaching that of oxygenated tungsten. 

Because the ionizer was exposed to  air between tes t s ,  this contaminated 

surface i s  not unexpected. The neutral  fraction measurements  €or these 

three  curves  a r e  shown i n  Fig. V-8 .  

near  the 5 . 0  eV work function line, indicating a contaminated surface.  

Because these were  checkout tes t s ,  no effort was made to  clean the 

ionizer .  

The second and third t e s t s  

It can be seen  that all curves  a r e  

In addition, it was thought that  the th rus t e r  would operate with 

l e s s  noise i f  it were  cleaned pr ior  to the step-by-step plan of testing 

outlined ea r l i e r .  

3 .  Evaluation of the Coating 

Following the init ial  t e s t s ,  the thrus te r  was disassembled and 

cleaned. 

heater .  

near  700 K to  keep cesium f rom condensing on it. In turn,  this would 

decrease  any electrode drain associated with cesium coverage. 

f i r s t  s tep in the evaluation was to  operate the th rus t e r  until the ionizer 

was clean. The start ing t ime /ze ro  t ime  reference was the point where 

the ion beam was first observed. Neutral  fraction measurements  were  

The acce l  electrode was exchanged €or one with an operating 

The  heater  was intended to  operate  the acce l  a t  a tempera ture  
0 

The 
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taken as the beam increased  f rom 3 mA to 19 m A .  

measurable  neutral  fraction signal, indicating that the neutral  fraction 

was l e s s  than the detection sensitivity of the neutral  detector.  

t empera ture  curves  were  taken at the end of 11-1/2,  19, 35-1/2,’  and 

50-1/2 hours of operation. 

virtually ze ro  up to 1-570 at the end of 50-1/2 hours .  

t empera ture  was measured  a s  follows; 

1600 K. The tempera ture  was lowered, and beam curren t  and neutral  

fraction data were  recorded.  

until the beam curren t  s ta r ted  to  drop. 

began it was s o  rapid that a data point could not be recorded.  

reason,  a plot of the data shows the. l as t  point before the rapid drop  

occurred.  Figure V -9 shows the c r i t i ca l  t empera ture  curves  The 

c r i t e r i a  for a clean ionizer was taken to  be a near ly  constant beam cur -  

ren t  to  within 50 K of the clean porous tungsten line shown in  Fig. V - 9 .  

This condition was measured  at the end of 50-1/2 hours .  The last point 

measured  before the beam dropped was at 1362 K. 

only a 25OK difference between the 35-1 /2  hour and 50-1 /2  hour curves ,  

the neutral  fraction differs by m o r e  than an  o rde r  of magnitude, 

neutral  fraction data corresponding to  the c r i t i ca l  t empera ture  curves  

a r e  shown in  Fig.  V - 1 0 ,  

average cur ren t  density of 6.99 m A / c m  It can be seen that this 

curve falls between the 4 . 5  and 4 . 6  eV work function l ines.  

There  was no 

Cri t ical  

The neutral  fractions increased f rom 

The cr i t ica l  

The ionizer was initially at 
0 

Lowering of the temperature  continued 

In most  ca ses ,  when the drop 

F o r  this 

0 

0 Although there  is  

The 

The clean ionizer curve was taken with an  
2 

The performance of the ionizer i s  compared with that under 

Contract NAS 3-6271 in  Fig. V - 1 1 -  The recent data were  taken a t  an 
2 

average cur ren t  density of 6 . 9 9  m A / c m  ; the ea r l i e r  data were  taken 

at average cur ren t  densit ies of 8 .8  and 13 .4  m A / c m  

the present  work have the same general  shape but l ie  c loser  to  the 

13.4 m A / c m  than the 8 , 8  m A / c m  curve.  Another comparison for  

the s a m e  ionizer is given in Fig.  V-12, which shows the neutral  f r ac -  

tion ve r sus  cur ren t  density for a clean ionizer.  

fractions,  the recent work gives neutral  fractions about t w i c e  as  la.rge 

2 The resul ts  of 

2 2 

an t e r m s  of neutral  
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2 as the ea r l i e r  resul ts  for a cur ren t  density of 7 mA/cm . This differ-  

ence is caused either by a systematic e r r o r  i n  the measurements  or  by 

new charac te r i s t ics  of the ionizer .  

neutral  detector were  used, i t  is plausible to  rule out the e r r o r .  

ionizer had been s tored  on a shelf in a warehouse,  unprotected f rom 

the natural  environment, for five y e a r s ,  so  that i t  is conceivable that 

a change i n  propert ies  could occur.  

between both se t s  of data  is not imperat ive for evaluation of the s i lver  

coating. The performance of the ionizer was evaluated by comparison 

with the c r i t i ca l  t empera ture  curves  taken on this program. After the 

clean ionizer performance a t  50 - 1 / 2  hours  was obtained, the thrus te r  

was turned off and exposed to  the laboratory environment for approxi- 

mately four days.  It was then reinstalled in  the UHV chamber and the 

ionizer c r i t i ca l  t empera ture  was measqred  9 hours  a f te r  the ionizer 

reached operating temperature .  This curve  is shown Fig.  V-13 with 

the 50-1/2 hour curve a l so  plotted as a reference.  

played a clean surface i n  a much shor te r  t ime (i. e . ,  8 -1 /2  hours  

r a the r  than 50-1/2 hours ) .  

af ter  exposure to  air is  questionable. Fortunately, neutral  fraction 

data were  taken every 1/2 hour before the cr i t ical  t empera ture  

data were  taken, and showed approximately when the surface approached 

the clean condition. This can be  seen  in Fig.  V-14. The beam 

curren t  was increased in  s teps  up to  approximately 16 mA. No neutral  

fraction was detected until the t e s t  had been under way fo r  5-1 /2  hours .  

A t  this t ime,  the beam was at the 12 mA level for 1 hour.  

fraction measurements  made a t  the end of 4-1/2 and 5 hours  were  be- 

low the sensitivity of the detector.  

measurable  neutral  f l u x  at the 5-1 /2  hour mark .  

increased to  about 16 mA, the neutral  fraction a l so  increased.  

c r i t i ca l  t empera ture  was taken at the point shown in  F ige  V-14. This 

short  cleanup t ime should not be  taken as typical, since p r io r  experi-  

ence has  indicated cleanup t ime is  not direct ly  related to  exposure t ime.  

Because the identical th rqs te r  and 

The 

In any case ,  exact agreement  

The ionizer d i s -  

The condition of the surface immediately 

Neutral  

It can be  seen  that there  was a 

As the beam was 

The 
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4. F i r s t  Silver Coating 

After  the ionizer was thought to  be clean, the thrus te r  was 

The ion pump was turned off and a turned off and allowed to cool. 

mechanical pump was used to  pump the chamber  through a zeolite t r a p  

to  prevent oil f r o m  diffusing into the chamber.  

the sys tem until a steady 350 pm p res su re  (as read by a thermocouple 

gauge) was obtained. 

tion by means of the magnetic ro ta ry  feedthrough, 

the voltage on the cathode was decreased  to -750 V for  5 s e c .  

gas flow was then turned off, and the system was pumped in  for about 

4 hours  with the mechanical pump. 

valved off, and the p r e s s u r e  was decreased fur ther  with two sorption 

pumps. The system reached operating p r e s s u r e  about 10 hours  af ter  

the s i lver  was sputtered onto the ionizer surface.  

turned on and kept at 160OoK for 2 hours before the feed sys tem was 

turned on; this was m o r e  than enough t ime to  evaporate 50 to  100 2 
of s i lver  f rom the ionizer.  

Argon was bled into 

The s i lver  cathode was placed in its proper  posi- 

Once in position, 

‘The argon 

The mechanical pump was then 

The ionizer was 

A cr i t i ca l  t empera ture  curve was taken 2-1/2 hours a f te r  the 

This curve  i s  plotted with the ionizer  was a t  operating tempera ture .  

previous curves i n  Fig.  V-15. 

between the curve taken p r io r  to  the s i lver  deposit and that taken af te r  

the coating was deposited and removed. Therefore ,  it  was concluded 

that the s i lver  did not affect the ionizer charac te r i s t ics .  

0 There  was only about a 25 K difference 

The neutral  fraction data in  Fig. V-16 substantiate the above 

conclusion. The curve taken af ter  the s i lver  was removed is  in  bet ter  

agreement  with the 50-1/2 hour curve than that taken pr ior  t o  s i lver  

deposition. 

p r i o r  to  deposition, o r  it cleaned up af ter  the deposition was removed. 

It is a l so  possible that the ionizer became clean af ter  the c r i t i ca l  

t empera ture  data were  taken and p r io r  to  the s i lver  deposit because 

the ionizer was a t  operating tempera ture  for 2 hours  af ter  the data 

This implies that the ionizer was l e s s  clean than des i red  
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were  taken. 

was removed f r o m  the ionizer p r io r  t o  sputtering. 

that the s i lver  coating did not de t e r io ra t e  the ionizer performance when 

exposed to  350 pm of argon p r e s s u r e  during the sputtering p rocess .  

This  2 hour period was necessary  to  a s s u r e  that a l l  ces ium 

It can  be concluded 

The second, and final, coating of s i l ve r  on the ionizer was 

made  a f t e r  the th rus t e r  w a s  cooled. This  t ime,  however,  the chamber  

was vented to the laboratory a tmosphere  and the s ide flanges w e r e  re-  

moved f r o m  the chamber .  

for  54 hours .  

ionizer  \ V i i s  a t  1600 K for 1 hour before the feed sys t em w a s  turned on. 

At 1600°K, i t  takes  a fraction of a second to  evaporate  100 3 of s i lver .  

Thrt f i r s t  c r i t i ca l  t empera tu re  curve  was taken 3 hours  af ter  the ionizer 

reached operating t empera tu re .  

shown in F i g .  V - 1 7 ,  along with the previous r e su l t s .  It i s  obvious that  

the ionizer cha rac t e r i s t i c s  have changed dramatical ly .  

t empera tu re  has  increased  about 150?S, which i s  a n  unexpected resu l t .  

The neutral  f ract ion data  for this  f i r s t  run a r e  shown in Fig.  V - 1 8  

and a r e  compared  with the r e su l t s  for  a clean ion izer .  

that the neutral  f ract ions a r e  quite different a t  lower tempera tures .  

It i s  interest ing to note that the work functions a r e  near ly  the same  a t  

higher t empera tu res .  This i s  unexpected for  an  oxygenated porous 

tungsten surface.  It appea r s  that  the cha rac t e r i s t i c s  of the ionizer  

have changed, but not as the resu l t  of an  oxygen-tungsten reaction. 

Seven c r i t i ca l  t empera tu re  curves  were  taken to determine whether 

the cha rac t e r i s t i c s  would change. These curves  a r e  shown in  F igs .  

V - 1 9  and V - 2 0 .  

af ter  the ionizer had reached operating tempera ture .  

signs that the ionizer  was cleaning up. 

all seven runs a r e  shown i n  F i g .  V - 2 1  along with the clean ionizer  

curve;  they all show the same  genera l  shape. 

The th rus t e r  was exposed in  this manner  

The sys t em was then closed and pumped down. The 
0 

This c r i t i ca l  t empera tu re  curve  i s  

The c r i t i ca l  

It can be seen  

The l a s t  c r i t i ca l  t empera tu re  curve  was taken 8 hours  

The re  were  no 

The neutral  f ract ion data for  
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SECTION VI  

CON C LUSION 

Under Task  I of this  program a technique was successfully 

developed for  applying a metall ic coating to the surface of a porous 

tungsten ionizer ,  

with a 20 pm thick s i lver  coating. Fu r the rmore ,  once the s i lver  was 

removed the gas  flow charac te r i s t ics  of the ionizer were  the same a s  

those pr ior  to the coating. 

actual ion thrus te r .  A method (and, subsequently, a system) W ~ S  devel- 

oped by which an ionizer  of an operational th rus te r  could be coated 

while the thrus te r  was still in the vacuum chamber.  

It was shown that a n  ionizer could virtually be sealed 

Task  11 extended the resu l t s  of Task  I to  an 

The coating sys tem is completely operational and can be used 

for detailed studies of the effectiveness of the coating as a protection 

of an ionizer surface.  During the present  program,  the sys tem was 

used to  evaluate the contamination protection capabilities of a 100 .8 
si lver  coating on an  ionizer surface.  

coating i tself  did not contaminate the ionizer,  it did not protect the 

ionizer f rom the laboratory environment. The 100 a coatings were  

considered initially because i f  th is  thickness was adequate f o r  pro-  

tecting the ionizer,  the possible shorting out of the high voltage insula- 

t o r s  would be minimized. These init ial  resul ts ,  however, suggest that 

the other parameters ,  such as g rea t e r  coating thickness,should be in-  

vestigated. 

cause the 100 g si lver  coating does not appear t o  penetrate into the 

pores  of the ionizer surface.  Thus, it is quite possible that the impor-  

tant ion generating pores  receive no coating. 

tudlly impossible to  determine the penetration of the 100 a coatings 

While it was found that the.100 a 

Greater  coating thicknesses a r e  probably necessary  be-  

Unfortunately, it is v i r -  

into the pores  because these a r e  i n  the range of monolayer thicknesses.  
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Thicker coatings can  be seen  easily,  however. 

a previous program, a c r o s s  section of an  ionizer with a chemical 

coating is shown in Fig. VI-  1 Similar  photographs of sputtered 

ma te r i a l  could furnish valuable coverage information. 

that the pores  a r e  not filled (and the present  resu l t s  appear to  support 

this  view), the process  can  be  modified fur ther .  One very promising 

modification is  to  heat  the ionizer during the sputtering; the tempera-  

t u re  would have to  be relatively low s o  that t he re  would be adequate 

surface diffusion but limited evaporation. 

e rage  should be obtainable i n  this manner .  

A s  an  example f rom 

If it is  found 

Uniform and complete cov- 

6 6  
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Fig. VI-1. Cross section of ionizer coated with iridium. 
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